Skip to main content

How GMSK Modulation Technique works in GSM?

How Mobile Network works with GMSK 

Modulation Technique ?

Answer: "Gaussian Minimum Shift Keying or Gaussian filtered Minimum Shift Keying, GMSK is the form of modulation with no phase discontinuities & it is used for data transmission due to efficient spectrum usage."

GMSK Introduction :

MSK modulation
MSK modulation


MSK and also GMSK modulation are what is known as a continuous phase scheme. Here there are no phase discontinuities because the frequency changes occur at the carrier zero crossing points. This arises as a result of the unique factor of MSK that the frequency difference between the logical one and logical zero states is always equal to half the data rate. This can be expressed in terms of the modulation index, and it is always equal to 0.5.
 Frequency/bit rate offset from carrier
Frequency/bit rate offset from carrier

GMSK modulation is similar as MSK,  a form of continuous-phase frequency-shift keying. One of the problems with standard forms of PSK is that sidebands extend out from the carrier. To overcome this, MSK and its derivative GMSK can be used.

Generating GMSK modulation:


Generating GMSK using a Gaussian filter and VCO
modulation index

Generating GMSK using a Gaussian filter and VCO:
Block diagram of I-Q modulator used to create GMSKBlock diagram of I-Q modulator used to create GMSK



Advantages of GMSK modulation:


1.MSK and also GMSK modulation are what is known as a continuous 
phase scheme. Here there are no phase discontinuities because the frequency changes occur at the carrier zero crossing points. This arises as a result of the unique factor of MSK that the frequency difference between the logical one and logical zero states is always equal to half the data rate. This can be expressed in terms of the modulation index, and it is always equal to 0.5.

2.A plot of the spectrum of an MSK signal shows sidebands extending well beyond a bandwidth equal to the data rate. This can be reduced by passing the modulating signal through a low pass filter prior to applying it to the carrier. The requirements for the filter are that it should have a sharp cut-off, narrow bandwidth and its impulse response should show no overshoot. The ideal filter is known as a Gaussian filter which has a Gaussian shaped response to an impulse and no ringing. In this way the basic MSK signal is converted to GMSK modulation.

3.There are two main ways in which GMSK modulation can be generated. The most obvious way is to filter the modulating signal using a Gaussian filter and then apply this to a frequency modulator where the modulation index is set to 0.5. This method is very simple and straightforward but it has the drawback that the modulation index must exactly equal 0.5. In practice this analogue method is not suitable because component tolerances drift and cannot be set exactly.

3.A second method is more widely used. Here what is known as a quadrature modulator is used. The term quadrature means that the phase of a signal is in quadrature or 90 degrees to another one. The quadrature modulator uses one signal that is said to be in-phase and another that is in quadrature to this. In view of the in-phase and quadrature elements this type of modulator is often said to be an I-Q modulator. Using this type of modulator the modulation index can be maintained at exactly 0.5 without the need for any settings or adjustments. This makes it much easier to use, and capable of providing the required level of performance without the need for adjustments. For demodulation the technique can be used in reverse.

4.There are several advantages to the use of GMSK modulation for a radio communications system. One is obviously the improved spectral efficiency when compared to other phase shift keyed modes.

5.A further advantage of GMSK is that it can be amplified by a non-linear amplifier and remain undistorted This is because there are no elements of the signal that are carried as amplitude variations. This advantage is of particular importance when using small portable transmitters, such as those required by cellular technology. Non-linear amplifiers are more efficient in terms of the DC power input from the power rails that they convert into a radio frequency signal. This means that the power consumption for a given output is much less, and this results in lower levels of battery consumption; a very important factor for cell phones.

6.A further advantage of GMSK modulation again arises from the fact that none of the information is carried as amplitude variations. This means that is immune to amplitude variations and therefore more resilient to noise, than some other forms of modulation, because most noise is mainly amplitude based.


Disadvantages GMSK modulation:

1. Although GMSK reduces sideband power, it increases modulation memory in digital devices in which a previously received signal acts as interference for subsequently received signals. This phenomenon can cause digital devices to confuse various signals with each other and prevent the device from performing the correct functions. To correct this issue, signals that GMSK shapes must also be equalized with complex algorithms on the receiving device, requiring more hardware and more advanced software.

2.For the other two receivers we derive theoretical results that will show that for a given loop bandwidth, a receiver structure, and a channel code, there is a lower data rate limit on the GMSK below which a higher SNR than what is required to achieve the required FER on the link is needed. These limits stem from the minimum loop signal-to-noise ratio requirements on the receivers for achieving lock. As a result of this, for a given channel code and a given FER, there could be a gap between the maximum data rate that BPSK can support without violating the spectrum limits and the minimum data rate that GMSK can support with the required FER depending on the type of GMSK receiver that is used.


Popular posts from this blog

Multiplexing and Multiple Access

Multiplexing And Multiple Access : Digital Communications Difference between Multiplexing and Multiple Access: Sr.No. Multiplexing Multiple Access 1 “In telecommunications and  computer networks, multiplexing is a process where multiple analog  message signals or digital data  streams are combined into one   signal over a shared medium.” “In telecommunications and computer networks, a channel access method or multiple access  method allows several terminals connected to the same multipoint physical medium to transmit over it and to share its capacity.” 2 The multiplexed signal is transmitted  over a communication channel,  which may be a physical transmission medium. A channel-access scheme is  based on a multiplex method  that allows several data streams  or signals to share the  same communication channel or  physical media.

Difference in between Time division multiplexing (TDM) and Frequency division multiplexing (FDM)

Difference in between TDM and FDM: This page on FDM versus TDM describes  difference between FDM and TDM multiplexing . FDM is the short form of frequency division multiplexing and TDM is the short form of time division multiplexing. In FDM each signal is modulated onto different unique RF carrier frequency and all carrier frequencies are separated significantly so that bandwidth of the signals do not overlap in frequency domain. Figure: Difference in between TDM and FDM

Comparison between armature controlled and field controlled DC servo motor

Comparison between armature controlled and field controlled DC servo motor : Field controlled DC servomotor Armature controlled DC servomotor 1.                         Field is excited by control voltage Armature is excited by control voltage 2.                        Armature            current kept constant Field      current kept constant 3.                        Required             low        power amplifiers are simple to design Required             high       power amplifiers 4.                        Efficiency is poor Efficiency is better 5.                        It has large time constant It             has         small      time constant 6.                        Cost is low Cost is high 7.                        It is open loop system It is close loop system Comparison between ar